自考

各地资讯
当前位置:华课网校 >> 自考 >> 模拟试题 >> 工学类 >> 材料加工和成型工艺 >> 文章内容

排行热点

自考《材料加工和成型工艺》复习试题及答案

来源:华课网校  [2017年1月22日]  【

  1.分别区分”通用塑料”和”工程塑料”,”热塑性塑料”和”热固性塑料”,”简单组分高分子材料”和”复杂组分高分子材料”,并请2~3例.

  根据塑料的用途不同分为通用塑料和工程塑料

  通用塑料是指产量大,价格低,应用范围广的塑料,主要包括聚烯烃,聚氯乙烯,聚苯乙烯,酚醛塑料和氨基塑料五大品种.人们日常生活中使用的许多制品都是由这些通用塑料制成.

  工程塑料是只拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的刚性好,蠕变小.自润滑,电绝缘,耐腐蚀等,等可作为工程结构材料和代替金属制造机器零部件等的塑料.例如聚酰胺,聚碳酸酯,聚甲醛,ABS树脂,聚四氟乙烯,聚酯,聚砜,聚酰亚胺等.工程塑料具有密度小,化学稳定性高,机械性能良好,电绝缘性优越,加工成型容易等特点,广泛应用于汽车,电器,化工,机械,仪器,仪表等工业,也应用于宇宙航行,火箭,导弹等方面.

  根据受热后发生的形态变化,可将高分子化合物分为热塑性塑料和热固性塑料两大类。

  热塑性塑料在受热后会从固体状态逐步转变为流动状态。这种转变理论上可重复无穷多次。或者说,热塑性高分子是可以再生的。聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性塑料。

  热固性塑料在受热后先转变为流动状态,进一步加热则转变为固体状态。这种转变是不可逆的。换言之,热固性高分子是不可再生的。 能通过加入固化剂使流体状转变为固体状的高分子,也称为热固性高分子。 典型的热固性塑料如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等。

  由一种单体聚合而成的聚合物称为均聚物或简单组分高分子材料。聚合物也可由两种或两种以上的单体共同聚合而成。如PE,PP, PC等

  由两种或两种以上单体聚合而成的聚合物称为共聚物或复杂组分高分子材料。根据各种单体单元在分子链中的排列状况,可将共聚物分为无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物等。通过普通的聚合方法,只能得到无规共聚物和交替共聚物,嵌段共聚物和接枝共聚物必须通过特殊方法制备。 共聚是高分子化合物改性的重要方法之一。如ABS,PA6/滑石粉等.

  2.什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?

  结晶 聚合物结晶过程与小分子化合物相似,要经历晶核形成和晶粒生长两过程。温度高于熔点Tm,高分子处于熔融状态,晶核不易形成;低于Tg,高分子链运动困难,难以进行规整排列,晶核也不能生成,晶粒难以生长。高分子形成结晶的能力要比大分子弱得多。相当大的一部分高分子是不结晶或很难结晶的。能结晶的称为结晶性高分子,不能结晶的称为非结晶性高分子。要注意结晶性高分子与结晶高分子的区别,例如聚对苯二甲酸乙二醇酯是结晶性高分子,但如果没有适当的结晶条件例如从熔体骤冷,得到的是非晶态,此时不能称为结晶高分子。也就是说结晶能力除了高分子的结构因素外还有温度等外界因素。结晶形态主要有球晶、单晶、伸直链晶片、纤维状晶、串晶、树枝晶等。球晶是其中最常见的一种形态。

  取向p38 高分子和它的链段本身具有较大的长度,因此在空间上必然指向一定的方向。当高分子链段在空间随机取向时,由概率论可知,此时分子或分子链段指向各个方向的几率是相同的。在宏观上,高分子的这种取向方式使高分子聚合物在各个方向上呈现相同的品质,即各向同性性质。高分子链段也可能沿某些方向规整地周期性排列,从而形成高分子晶体。在一些条件下,如外力,流动等,相当数量的高分子链段会平行指向同一方向,由此形成的高分子聚集态结构被称作取向态结构。高分子链段平行地向同一方向排列的现象叫做高分子聚合物的取向。

  3.请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性好坏.

  玻璃态高分子不宜进行引起大变形的加工,表现为坚硬的固体,但可通过车、铣、削、刨等进行加工。在玻璃化温度Tg以下的某一温度,材料受力容易发生断裂破坏,这一温度称为脆化温度,它是材料使用的下限温度。

  在Tg以上的高弹态,高分子的模量减少很多,形变能力显著加大。在Tg-Tf温度区靠近Tf,由于高分子的粘性很大,可进行某些材料的真空成型、压力成型、压延和弯曲成型等。把制品温度迅速冷却到Tg以下温度是这类加工过程的关键。Tg是选择合理应用材料的重要参数,同时也是大多数高分子加工的最低温度。

  在Tf以上,高分子化合物转变为粘流态,通常又将这种液体状态的高分子称为熔体。材料在Tf以上不高的温度范围表现出类橡胶流动行为。这一转变区域通常用来进行压延成型、某些挤出成型和吹塑成型等。比Tf更高的温度使分子热运动大大激化,材料模量降到最低值,这时高分子熔体形变的特点是不大的外力就能引起宏观流动,这时形变中主要是不可逆的粘性变形,冷却高分子就能将形变永久保持下来,这一温度范围常用来进行熔融纺丝、注射、挤出、吹塑和贴合等加工。过高的温度将使高分子的粘度大大降低,不适当的增大流动性容易引起溢料、形状扭曲、毛丝断裂等现象。温度高到分解温度Td附近还会引起高分子化合物的分解,以致降低产品物理机械性能或引起外观不良。

  高分子在加工过程中常受到挤压作用,可挤压性是指高分子化合物通过挤压作用变形时获得形状和保持形状的能力。在挤压过程中,高分子熔体主要受到剪切作用,故可挤压性主要取决于熔体的剪切粘度和拉伸粘度。大多数高分子化合物熔体的粘度随剪切力或剪切速率增大而降低。如果挤压过程材料的粘度很低,虽然材料有良好的流动性,但保持形状的能力较差;相反,熔体的剪切粘度很高时则会造成流动和成型的困难。材料的挤压性质还与加工设备的结构有关。挤压过程高分子熔体的流动速率随压力增大而增加,通过流动速率的测量可决定加工时所需要的压力和设备的几何尺寸。材料的挤压性质与高分子的流变性,熔融指数和流变速率密切有关。

  5.什么是结晶度?结晶度的大小对聚合物性能有哪些影响?

  聚合物即使结晶,也不是分子链的所有结构单元都参与结晶,总有一部分高分子链或链的一部分处于非晶态,即在通常条件下所获得的结晶性聚合物并不是100%的完全结晶的,即分子链的结晶多少称为结晶度。

  结晶性不同,性能也不一样,随结晶度提高,密度、熔点、拉伸强度、硬度增强,但拉伸率、冲击韧性下降。

  6.何谓聚合物的二次结晶和后结晶?

  二次结晶:是指一次结晶后,在一下残留的非结晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

  后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

首页 1 2 尾页
责编:zhangjing0102